Industrial Recommender System: Principles, Technologies and Enterprise Applications
No. Klas
:
-
Pengarang
:
Lantao Hu, Yueting Li, Guangfan Cui, Kexin Yi
Penerbit
:
Springer, -, 2024
Kolasi
:
-
Digital Copy
:
1
Pinjaman Aktif
:
0
Synopsis
:
Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises. The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference. Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understanding of the foundational framework, insights into core technologies, and advancements in industrial recommender systems. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.